The Future of Rendering (An Extremely Biased and Very Personal Perspective)

George Drettakis

GRAPHics and Design with hEterogeneous COntent

http://team.inria.fr/graphdeco

Centre Inria d'Université Côte d'Azur Sophia-Antipolis, France

Who said Rendering is dead ?

- I've been hearing the line "Rendering is dead" for the last 20 years
- Its not, and it never has been

GraphDeco

SIGGRAPH 2022 (1092)

$neural_{\scriptscriptstyle (23)}\ rendering_{\scriptscriptstyle (18)}\ learning_{\scriptscriptstyle (15)}\ simulation_{\scriptscriptstyle (14)}$

synthesis (9) image (8) shape (7) fast (7) model (7) reconstruction (7)

SIGGRAPH 2021 (1045)

neural (17) learning (13) rendering (9) model (9) real-time (8) differentiable (7) appearance (7) contact (7) control (6) motion (6)

SIGGRAPH 2020 (992)

rendering (13) motion (12) learning (10) efficient (7) deep (7)

reconstruction (7) neural (7) simulation (6) dynamics (6) video (6)

SIGGRAPH 2019 (819)

rendering (10) surfaces (7) reconstruction (7) image (6) fields (6) synthesis (6) modeling (6) animation (6) optimization (5) learning (5)

SIGGRAPH 2018 (947)

deep (16) learning (10) simulation (9) synthesis (8) shape (7)

optimization (6) efficient (6) surfaces (6) motion (6) real-time (6)

SIGGRAPH 2017 (970)

deep(11) reconstruction(9) image(9) interactive(9) real-time(8)

shape (a) imaging (z) optimization (z) learning (z) modeling (z)

Some Background

A little bit of history

So What is Rendering Anyway ?

- When I started Graphics, in 1988 it was all very simple
- Rendering was the last step after Modelling and Animation

[Cook, Carpenter, Catmull SIGGRAPH'87]

[Snyder and Barr SIGGRAPH'87]

There were a lot of basic open problems

- In 1988, we were just starting to do global illumination and soft shadows (radiosity, meshing)
- No-one knew how to render caustics

[Cohen and Greenberg, SIGGRAPH'85]

Disclaimer: This is not a complete history of Rendering

- A few landmarks to lead us to today and the future
- Physically-Based Rendering (mainly path tracing)
- GPUs & Real-Time Rendering
- Inverse Rendering
- Image-Based Rendering

Physically-Based Rendering (PBR): Path Tracing

- Path-Tracing: Kajiya 1986; no-one could figure it out (but no evil meshing !)
- Shirley et al. Monte Carlo techniques for direct lighting, TOG 1990
 - "1024 spp is impossible" Rendering Workshop '92 in Bristol
- Veach's thesis 1997: a reference for everyone in the field

Path-Tracing now an industry standard

- Commercial renderers
 - Path tracing is now the standard
 - Simple path tracing is usually preferred
- Film: Weta, Pixar, Digital Domain, ILM
- Arnold, Maxwell
- Blender Cycles

Path tracing in production: how did that happen ?

- Reliable physics makes lighting design much easier, and more predictable
- With enough rays (and time), simple path tracing works for everything, predictably
- Better hardware: clusters made path tracing feasible
- Better algorithms: (multiple) importance sampling (MIS)
- GPU path-tracing (more on this later)
- Denoisers are a critical part of the equation

Fast Forward to (Cheap) GPUs

- Early 2000's first NVIDIA GeForce:
 - GPU prices from 30000€ to 700€
- Opened a completely new era for graphics
- Suddenly real-time graphics was accessible for games on PCs
- (but they crashed every 10 minutes in the beginning ☺)

Real-Time Rendering

- The world of approximate PBR
- Precompute and lookup
 - Virtual Point Lights (VPL)
 - Precomputed Radiance Transfer (PRT)
 - Preconvolutions and Image-Based Lighting (IBL)
 - Screen-Space Methods
- Various other things I wont talk about

Inverse Rendering

- Capture (typically photos/video) a real scene and create a true 3D asset
- Debevec et al. "Modeling and Rendering Architecture from Photographs SIGGRAPH '96
- Debevec "Rendering Synthetic Objects in Real Scenes..." SIGGRAPH '98
- Loscos et al '99

Occlusion Awareness

Rendering uses multiple depths. To visualize we show average depth.

Penner & Zhang Soft3D, SIGGRAPH Asia 2017

Meshes are Evil

- MVS geometry has lots of errors
- IBR tries to fix the errors by blending images
- Learning to the rescue: Hedman et al 2018, Deep Blending

Meshes are evil: fixing meshing errors is hard

Unstructured Lumigraph

Deep Blending

Hedman et al Deep Blending, SIGGRAPH Asia 2018

The Rendering Revolution

We are at a tipping point in the history of the field

The Rendering Revolution

- RTRT hardware
- Differentiable Rendering
 - Differentiable PBR
 - Simplified models for Neural Rendering
- Neural Rendering
 - Radiance Fields
 - Generative Models

Real-Time-Ray-Tracing (RTRT) hardware

- Obviously NVIDIA RTX in 2018
 - Designed in part by the Finns (Aila, Laine et al. note those names)
- Longer process than some may think
 - Initial ideas Slusallek et al. (SaarCORE Symp. Graph. Hardware 2002, SIGGRAPH 2005)
- Suddenly ray-tracing is a viable option for interactive rendering
 - RTRT first bounce is faster than rasterization ? (Debatable, but maybe true)
- The design space suddenly became much bigger

Differentiable PBR

- Inverse rendering on steroids (RTRT, GPU driven gradient-based optimization)
- Amazing theory and results (Wenzel Jakob, Tzu-Mao Li, Ioannis Gkioulekas)
- Still too "rigid": evil meshes (egain), discontinuities
- But you get a PBR compatible asset at the end

Original

Derivative with respect to sun location

Differentiable Rendering for Learning

• Material Estimation: to estimate SVBRDF parameters from images you need to propagate gradients *through the renderer*

Neural Rendering: Neural Radiance Fields (NeRF)

- Simplistic differentiable rendering: volumetric ray-marching
- Volumetric representation of shape via an MLP

Neural Radiance Fields

- Important element:
 - Flexibility to fix, create and destroy geometry during optimization
 - Makes all the difference for rendering
- Continuous representation super important
- But is it the best way to render ?

Dynamic NeRFs

• It is possible to create & manipulate radiance fields with motion

Neural Rendering: Generative Models

- Generative models: the new way to render ?
 - StyleGAN and GANSpace: hyper realistic, latent space manipulations

Generative Models in 3D

• EG3D and latent space manipulation [Chan et al. 2022]

DreamFusion (Google)

ProlificDreamer (Microsoft)

"a DSLR photo of a peacock on a surfboard"

DreamFusion Automatic text-to-3D

A delicious croissant

Rendering is Now Central

- Rendering is much broader than it used to be:
 - Traditional PBR "last stage of image synthesis" is still valid
- New definition of Rendering ?

Any computational method that generates pixels as output, be it as a final image or an image used for optimization

- Provocative Opinion Disclaimer: Will everything be rendering in the future ?
 - NeRFs + Generative models will render geometry obsolete ?
 - Dynamic NeRFs Generative models will render animation obsolete ?

So what about the future ?

Some ideas and many opportunities

Do traditional methods have a future ?

- Yes, very much so !!
- Path tracing is used extensively in production
 - Important: even 5% improvement is a big deal (x1000s of frames x 1000s of hours x 1000s of \$\$ for compute)
 - Example: many papers on importance sampling in last 4-5 years
- PBR in games

aphDeco

- With RTRT, PBR is an option for games
- A clever shader or BRDF model can be a game changer

Generalized ReSTIR, [Lin et al. SIGGAPH '22]

Area lighting with anisotropic materials (ours)

I just want to do traditional rendering: What kind of things remain to be done?

- Hard light paths are still hard
- Faster path tracing, denoising etc.
- On-the-fly geometry amplification (new hardware)
- But Elephant in the room: where does data come from ?

- But still think about how you can apply your great new PBR method to neural methods: *Be open-minded* !
 - Your method will have much larger impact !

Opportunities for "New Rendering"

Opportunity 1: PBR for Neural Rendering

- Rendering is the new central element of neural methods
 - But it is not physically-based: entangled representation, just emissionabsorption model producing radiance
- Develop physically-based renderers for neural methods
 - Initial solutions encouraging, getting better

NeRD [Boss et al. 2020]

Opportunity 2: Efficient Rendering for Radiance Fields

- NeRFs are great, but do we actually need Neural Networks ?
 - Not always !
- We are experts in rendering, both PBR and real-time
- Exploit that knowledge for more efficient renderers
 - GPU sorting
 - Point-based rendering

[Kerbl et al '23]

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Opportunity 3: PBR for Generative Models and Disentanglement

• Generative models can generate multiple configurations

• Move to 3D?

Opportunity 4: Neural Representations for PBR

 Neural representations for things that are hard in traditional rendering

Neural Luminaires [Zhu et al. SIGGRAPH '21]

Opportunity 5: Neural PBR

- Use neural networks as a precomputation step
- Exploit all our knowledge about PBR

Opportunity 5+: Neural PBR

• Use MCMC to guide learning of global illumination

Işık et al. 2021 Finetuned

Ground Truth

Active Exploration. [Diolatzis et al ACM TOG 2022] <u>https://repo-sam.inria.fr/fungraph/active-exploration/</u> 41

Opportunity 6: Rendering as a Data Generator

- PBR as a data generator [Philip et al. '19,21], [Deschaintre et al. '18-21]
- Disentanglement: render different layers with PBR properties
- Domain gap, is noise good ?

(a) ground truth mesh (b) reconstruction of for a training scene the same training scene (c) reconstruction of real scene

[Philip et al '21]

https://repo-sam.inria.fr/fungraph/deep-indoor-relight/

Opportunity 7: Rendering for (Interactive) Geometry

- Neural rendering blurs the boundaries between rendering and geometry
 - Use geometry methods (tet meshes, simplification etc) for interactive manipulation of radiance fields
- Interpret radiance fields as a volume, but also as points: direct manipulation

NeRFShop [Jambon et al '23]

https://repo-sam.inria.fr/fungraph/nerfshop/

Opportunity 8: Rendering for Animation

- Neural rendering blurs the boundaries between rendering, geometry *and animation*
- Particle models can be interesting
 - Learn particle motion: promising results

PacNeRF [Li et al, ICLR 23]

ParticleNeRF [Abou-Chakraet al, arxiv 23]

Conclusion

- Rendering is alive and kicking !
- Rendering is at a momentous tipping point in the history of the field
- Neural methods offer immense potential, making rendering even more relevant
- Be open-minded and exploit these amazing opportunities !

Questions ?

Many projects in this talk funded by ERC Advanced Grant FUNGRAPH (<u>http://fungraph.inria.fr</u>) and EU Framework projects EMOTIVE, VERVE and CR-PLAY as well as ANR project SEMAPOLIS; We acknowledge the support of the the OPAL cluster infrastructure from Université Côte d'Azur and for the HPC resources from GENCI–IDRIS, as well as generous donations for Adobe.